® SHENZHEN LONG JING MICRO-ELECTRONICS CO., LTD. TO-220 Plastic-Encapsulate Thyristors

ALJCT610
 10A Silicon Controlled Rectifier

Description

ALJCT610 series of silicon controlled rectifiers, with high ability to withstand the shock loading of large current, provide high dv/dt rate with strong resistance to electromagnetic interference. They are especially recommended for use on solid state relay, motorcycle, power charger, T-tools etc.

ALJCT610A provides insulation voltage rated at 2500 V RMS and ALJCT610F provides insulation voltage rated at 2000V RMS from all three terminals to external heatsink.

Maximum Ratings ($\mathrm{T}_{\mathrm{j}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {(RMS }}$	RMS on-state current	10	A
Itsm	Non repetitive surge peak on-state current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	120	A
V ${ }_{\text {dRM }}$	Repetitive peak off-state voltage	500	V
VRRM	Repetitive peak reverse voltage	500	V
$\mathrm{I}^{2} \mathrm{t}$	$I^{2} \mathrm{t}$ value for fusing (tp=10ms)	72	$A^{2} \mathrm{~s}$
dl/dt	Critical rate of rise of on-state current($\mathrm{IG}_{\mathrm{G}}=2 \times \mathrm{IGT}^{\text {) }}$	50	$\mathrm{A} / \mu \mathrm{s}$
IGm	Peak gate current	4	A
$\mathrm{PG}_{\mathrm{g}}(\mathrm{AV})$	Average gate power dissipation	1	W
PGm	Peak gate power	5	W
T ${ }^{\text {j }}$	Junction Temperature	-40~125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-40~150	${ }^{\circ} \mathrm{C}$

Thermal Resistances

Symbol	Parameter	Value	Unit
R $_{\text {өJc }}$	junction to case	4.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Test Conditions		Min	Typ	Max	Unit
Igt	$V_{D}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=33 \Omega$				10	mA
$V_{G T}$					1.5	V
$\mathbf{V G D}^{\text {g }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}}, \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K} \Omega$		0.2			V
IL	$\mathrm{IG}_{\mathrm{G}}=1.2 \mathrm{I}_{\mathrm{GT}}$				25	mA
IH_{H}	$\mathrm{I}_{\mathrm{T}}=500 \mathrm{~mA}$				15	mA
dV/dt	$\mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }}$, Gate Open $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		50			$\mathrm{V} / \mu \mathrm{s}$
$V_{\text {TM }}$	$\mathrm{I}_{\text {TM }}=20 \mathrm{~A}, \mathrm{tp}=380 \mu \mathrm{~s}$				1.55	V
IDRM	$\begin{aligned} & V_{D}=V_{D R M} \\ & V_{R}=V_{R R M} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
IRRM		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			1	mA

Typical Characteristics

FIG. 1 Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width $\mathrm{tp}<10 \mathrm{~ms}$, and corresponging value of $\mathrm{l}^{2} \mathrm{t}(\mathrm{dl} / \mathrm{dt}<50 \mathrm{~A} / \mu \mathrm{s}$)

FIG.2: RMS on-state current versus case temperature
IT(RMS) (A)

FIG.4: On-state characteristics (maximum values)
Itm (A)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

