ALD[®] SHENZHEN LONG JING MICRO-ELECTRONICS CO., LTD.

SOT-23-6L Plastic-Encapsulate MOSFETS

ZXMP6A17E6

60V P-CHANNEL ENHANCEMENT MODE MOSFET

Features

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- Low input capacitance
- "Lead Free", RoHS Compliant
- Halogen and Antimony Free.

Description and Applications

This MOSFET has been designed to minimize the on-state resistance and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

- DC-DC Converters
- Power management functions
- Disconnect switches
- Motor control

Maximum Ratings (T_a=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit		
VDS	Drain-Source voltage	-60	V		
Vgs	Gate-Source voltage	±20	v		
ID	2)	-3.0			
	Continuous Drain current, $V_{GS} = 10V$ $T_A = 70^{\circ}C^{(2)}$	-2.4	Δ		
	4)	-2.3	А		
Ідм	Pulsed Drain current, V_{GS} = 10V ³⁾	-13.6			
ls	Continuous Source current (Body diode)	-2.5	Α		
I _{SM}	Pulsed Source current (Body diode)	-13.6	А		

Thermal Characteristics (T_a=25°C unless otherwise specified)

Symbol	Parameter			Unit	
PD	Power dissipation Linear derating factor	1)	1.1	W	
			8.8		
		2)	1.92	mW/°C	
			15.4		
R _{0JA}	Maximum Junction-to-Ambient		113	°C/M	
			65		
Тј, Тѕтс	Operating and storage temperature range			°C	

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit			
Off Characteristics										
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = -250µA		-60			V			
loss	Zero Gate Voltage Drain Current	V _{DS} = -60V, V _{GS} = 0V				1	μA			
lgss	Gate-body Leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$				±100	nA			
On Characteristics										
V _{GS(th)}	Gate-Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$		-1.0		-3.0	V			
R _{DS(on)}	Drain-Source On-Resistance ⁴⁾	V _{GS} = -10V, I _D = -2.3A			100	125	mΩ			
		V _{GS} = -4.5V, I _D = -1.9A			130	190				
g fs	Forward Trans conductance ^{4,5)}	V _{DS} = -15V, I _D = -2.3A			4.7		S			
V _{SD}	Diode Forward Voltage ⁴⁾	I _S = -2A, V _{GS} = 0V			-0.85	-0.95	V			
trr	Body Diode Reverse Recovery Time	- I _F = -1.7A, dI/dt = 100 A/µs			2.51		ns			
Qrr	Body Diode Reverse Recovery Charge				27.2		μC			
Dynamic Characteristics ⁵⁾										
Ciss	Input Capacitance	V _{GS} = 0V V _{DS} = -30V f = 1.0MHz			637		pF			
Coss	Output Capacitance				70					
Crss	Reverse Transfer Capacitance				53					
Qg	Total Gate Charge 6)	V _{GS} = -5.0V	I _D = -2.3A, V _{DS} = -30V		9.8		nC			
Qg	Total Gate Charge 6)				17.7					
Q _{gs}	Gate-Source Charge 6)	V _{GS} = -5.0V			1.6					
Q _{gd}	Gate-Drain Charge ⁶⁾				4.4					
t d(on)	Turn-On Delay Time ⁶⁾				2.6					
tr	Rise Time ⁶⁾	$V_{DD} = -30V, I_D = -1A,$ $R_G = 6\Omega, V_{GS} = -10V$			3.4		ns.			
t d(off)	Turn-Off Delay Time ⁶⁾				26.2					
t _f	Fall Time 6)				11.3					

Notes

- 2. Same as note (4), except the device is measured at t \leq 5 sec.
- 3. Same as note (4), except the device is pulsed with D = 0.02 and pulse width 300 µs. The pulse current is limited by the maximum junction temperature.
- 4. Measured under pulsed conditions. Pulse width \leq 300µs; duty cycle \leq 2%
- 5. For design aid only, not subject to production testing.
- 6. Switching characteristics are independent of operating junction temperatures.

^{1.} For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition.

Typical Characteristics

Typical Characteristics (Cont.)

t,

t_(on)

t_{d(of}

Test Circuits

 Q_{G}

Gate charge test circuit

Switching time waveforms

t_r

t_(on)

t_{d(on)}

10%

 V_{GS}

